Portfolio Selection with a Rank-Deficient Covariance Matrix

نویسندگان

چکیده

Abstract In this paper, we consider optimal portfolio selection when the covariance matrix of asset returns is rank-deficient. For case, original Markowitz’ problem does not have a unique solution. The possible solutions belong to either two subspaces namely range- or nullspace matrix. former case has been treated elsewhere but latter. We derive an analytical solution, assuming solution in null space, that risk-free and minimum norm. Furthermore, analyse iterative method which called discrete functional particle rank-deficient case. It shown convergent giving initial condition gives smallest weights Finally, simulation results on artificial problems as well real-world applications verify both efficient stable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Portfolio Selection with Singular Covariance Matrix

In this paper we use the Moore-Penrose inverse in the case of a close to singular and ill-conditioned, or singular variance-covariance matrix, in the classic Portfolio Selection Problem. In this way the possible singularity of the variance-covariance matrix is tackled in an efficient way so that the various application of the Problem to benefit from the numerical tractability of the Moore-Penro...

متن کامل

Portfolio Selection Using Tikhonov Filtering to Estimate the Covariance Matrix

Markowitz’s portfolio selection problem chooses weights for stocks in a portfolio based on a covariance matrix of stock returns. Our study proposes to reduce noise in the estimated covariance matrix using a Tikhonov filter function. In addition, we propose a new strategy to resolve the rank deficiency of the covariance matrix, and a method to choose a Tikhonov parameter which determines a filte...

متن کامل

Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection

This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators: the sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covari...

متن کامل

Randomly generating portfolio-selection covariance matrices with specified distributional characteristics

In portfolio selection, there is often the need for procedures to generate “realistic” covariance matrices for security returns, for example to test and benchmark optimization algorithms. For application in portfolio optimization, such a procedure should allow the entries in the matrices to have distributional characteristics which we would consider “realistic” for security returns. Deriving mo...

متن کامل

Approximating the Covariance Matrix with Low-rank Perturbations

Covariance matrices capture correlations that are invaluable in modeling real-life datasets. Using all d elements of the covariance (in d dimensions) is costly and could result in over-fitting; and the simple diagonal approximation can be over-restrictive. We present an algorithm that improves upon the diagonal matrix by allowing a low rank perturbation. The efficiency is comparable to the diag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Economics

سال: 2023

ISSN: ['1572-9974', '0927-7099']

DOI: https://doi.org/10.1007/s10614-023-10404-4